
1 Appendix

We begin by giving new formulae for estimation of Fst. Suppose we have a
biallelic marker in two populations in Hardy-Weinberg equilibrium. Choose the
variant allele, and suppose that the allele has population frequency p1, p2 in
populations 1 and 2 respectively Set qi = 1 − pi. Then we can define Wright’s
Fst as

Fst = N/D (1)

where

N = p1(q2 − q1) + p2(q1 − q2) (2)

D = p1q2 + q1p2 = N + p1q1 + p2q2 (3)

This is a definition of Fst, a parameter measuring divergence at a given locus,
not a sample statistic. In this paper we are only interested in divergence mea-
sures of biallelic markers and the theory will always assume the populations are
homogeneous.

Suppose we have a set S of markers Ak(k = 1, . . . M). For marker k we define
now N [k] and D[k] in the obvious way. We now define F (S) = Fst for the marker
set S by

F (S) =
N(S)

D(S)
(4)

where

N(S) =

∑M

k=1 N [k]

M
(5)

D(S) =

∑M

k=1 D[k]

M
(6)

Given the form of equation (4) it is highly desirable to find unbiased estimators
of N [k], D[k] else the bias will eventually dominate the estimate. Fix for now,
marker k, and suppose the population frequencies are p1, p2 for the variant allele,
and we observe allele counts a1, a2 for the variant allele, b1, b2 for the reference
allele. Take ni = ai + bi, i = 1, 2. N = N [k] is defined as (p1 − p2)

2
. A naive

estimator for N is
X = (a1/n1 − a2/n2)

2

We calculate the bias of X. Writing

X = ((a1/n1 − p1) − (a2/n2 − p2) + (p1 − p2))
2

Then

E(X) = (p1 − p2)
2

+ V ar(a1/n1|p1) + V ar(a2/n2|p2) (7)

= (p1 − p2)
2

+ p1(1 − p1)/n1 + p2(1 − p2)/n2 (8)
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Define h1 = p1(1 − p1) (2h1 is the heterozygosity at the marker for population
1). Then a natural estimator for h1 is

ĥ1 =
a1(n1 − a1)

n1(n1 − 1)
(9)

It is easy to check that ĥ1 is unbiased. Similarly define h2 for population 2,
with a corresponding estimator ĥ2 This is enough to show that:

N̂ = (a1/n1 − a2/n2)
2
− ĥ1/n1 − ĥ2/n2 (10)

is an unbiased estimator for N . Now

D = N + h1 + h2

which shows
D̂ = N̂ + ĥ1 + ĥ2 (11)

is an unbiased estimator for D.
By the Lehmann-Scheffé theorem [1, Theorem 4.2.2] N̂ and D̂ are uniformly
minimum variance unbiased estimators. No longer fixing a marker and writing
N̂ [k] for our estimator of N [k], and so on, we see that a natural estimator for
F (S) is

F̂ =

∑

k N̂ [k]

∑

k D̂[k]
(12)

Note that (12) does not give an unbiased estimator. However the law of large
numbers does imply that as sample size or the number of unlinked markers
become large we get an estimator that is asymptotically consistent.

Given our assumptions, our estimates of N [k], D[k] are exactly unbiased both
here and in the section below. Our formulae are different from those of Weir
and Cockerham [6], at least when population sample sizes differ.

1.1 Estimators in the presence of inbreeding

The estimators above are not correct if there is inbreeding. We continue to
assume that within a population there is no structure, but no longer assume
that the pair of chromosomes of each sample are unrelated. Thus we may have
excess homozygosity compared with Hardy-Weinberg equilibrium.

We extend our theory to this case. We give estimators of N , D that are unbiased,
without explicitly estimating the inbreeding coefficients. Let x0, x1, x2 be the
number of samples of population 1 with 0, 1, 2 copies of the variant allele. Let
y0, y1, y2 be the corresponding numbers for population 2. Let

s = x0 + x1 + x2

t = y0 + y1 + y2
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We will require that s, t > 1. In the notation of the previous section:

a1 = x1 + 2x2

a2 = y1 + 2y2

n1 = 2s

n2 = 2t

which will lead to estimators for N,D. In the presence of inbreeding, these
estimators are incorrect. Note however that if we pick alleles randomly from
each diplotype, then we will obtain valid unbiased estimators. We can of course
then obtain more efficient estimators by averaging over our choice of alleles.

Select an allele at random from each diploid genotype. Let u be the allele count
for population 1, and v be the count for population 2. From equation (10) we
want to compute expected values of:

X = (u/s − v/t)
2

ĥ1 =
u(s − u)

s(s − 1)

ĥ2 =
v(t − v)

t(t − 1)

when our estimator for N is

N̂ = E(X) − E(ĥ1)/s − E(ĥ2)/t (13)

For X, we see that u has mean x1/2 + x2 and variance x1/4. Similarly v has
mean y1/2 + y2 and variance y1/4. It follows that

E(X) =

(

x1 + 2x2

2s
−

y1 + 2y2

2t

)2

+
x1

4s2
+

y1

4t2

For E(ĥ) we need the expected value of u(s− u). Standard binomial coefficient
identities show that

E(u(s − u)) = x0x2 + (x0 + x2)x1/2 + x1(x1 − 1)/4

Now it follows that:

E(ĥ1) =
x0x2 + (x0 + x2)x1/2 + x1(x1 − 1)/4

s(s − 1)
(14)

E(ĥ2) =
y0y2 + (y0 + y2)y1/2 + y1(y1 − 1)/4

t(t − 1)
(15)

We now can apply equation (13) to obtain N̂ . For D̂ we have, using D =
N + h1 + h2 the equation

D̂ = N̂ + E(ĥ1) + E(ĥ2) (16)
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These formulae are slightly different from those of [5] who correct for inbreeding
by directly estimating an inbreeding ‘fixation index’ (see below) and state that
their estimates of the numerator N and denominator D are only ‘approximately
unbiased’. (see their equation (8)). We now obtain, using estimates over many
markers

F̂ =

∑

k N̂ [k]

∑

k D̂[k]
(17)

where N̂ [k], D̂[k] are the estimators above, robust to inbreeding, for marker
k. Just as before, the estimator of (17) is not unbiased but asymptotically
consistent as the number of unlinked markers becomes large.

The same ideas lead to a simple estimator of the inbreeding coefficient, pI . the
probability, in a sample from a population, that the two alleles at a locus are
identical by descent (IBD). For our case, with an assumed homogeneous popula-
tion, this is the same as Wright’s fixation index F . (See [4, page 154]). Consider
population 1, with the same notation as above. Let H be the probability that
two alleles from an individual are heterozygous. Then

H = (1 − pI)h

so that pI = (h − H)/h. An unbiased estimator of H is

Ĥ =
x1

s

Thus we obtain a natural estimate of pI :

p̂I =

∑

(ĥ − Ĥ)
∑

ĥ
(18)

where we sum over all SNPs in our data.

We have not yet worked out the theory, but it would appear that these estimators
of Fst have, in the absence of inbreeding, standard errors that are only a little
increased from the ‘optimal’ estimators using equations (10, 11).

2 f-statistics

We now discuss our f -statistics. f4 is the simplest. We have 4 distinct popu-
lations W,X, Y, Z. An allele has population frequencies w, x, y, z respectively
We observe counts w0, w1 of the allele and the complementary allele in a sample
from population W. Similarly we observe counts x0, x1; y0, y1; z0, z1. We will
assume that the total count for each population is at least 2. Thus the natural
(naive) estimator of w is

w′ =
w0

(w0 + w1)
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with similar definitions of x′, y′, z′. We wish to form unbiased estimates of
quantities such as (w−x)(y− z) which we term an f4-statistic. It is easy to see
that the naive estimate

f4(W,X, Y, Z) = (w′ − x′)(y′ − z′)

indeed is an unbiased estimator. Next suppose we want an estimator (f3-
statistic) for (w−x)(w−y) where w appears twice. Consider the naive estimator:
q = (w′ − x′)(w′ − y′) Then we can write q as

q = ((w′ − w) − (x′ − x) + (w − x))((w′ − w) − (y′ − y) + (w − y))

This shows that the bias of q is E(w′ − w)
2
. Let nW = w0 + w1 be the total

allele count for W. Then

E(w′ − w)
2

=
w(1 − w)

nW

Define hW = w(1 − w)
(2 hW is the heterozygosity at the marker for population W ). Then a natural

estimator for hW is ĥW = defined analogously to h1.

f3(W,X, Y ) = (w′ − x′)(w′ − y′) − ĥW /nW

and f3 is an unbiased estimator of (w − x)(w − y). Similarly we can define

f2(W,X) = (w′ − x′)(w′ − x′) − ĥW /nW − ĥX/nX

and show that f2(W,X) is an unbiased estimator of (w − x)
2
.

In applications we always wish to compute weighted sums of the f -statistics
across many markers. Unbiasedness is critical here ensuring convergence of
our average f -statistic to the average we would obtain by using the true allele
frequencies.

2.1 The Denominator

For f = Fst we have shown how to compute estimators for marker k N̂ [k], D̂[k].
Our estimate F̂ for F is now simply:

F̂ =

∑

k N̂ [k]

∑

k D̂[k]

For our f -statistics we have some choices. Our key idea is that the denominator
should not be population dependent. All our statistics are valid under any
reasonable choice, and what we did was the following.

We picked an outgroup (Hapmap Yoruba (YRI)), chosen as a ‘neutral’ pop-
ulation relative to the non-African populations studied here.
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1. For our graph calculations in Figure 4 we wanted to mimic our Fst esti-
mates closely, and the f -statistics are

s
∑

k N̂ [k]

∑

k D̂[k]

where D[k] is pk(1 − pk), and pk is the empirical frequency of the variant
allele at marker i in YRI. We require 0 < pk < 1. Here, s is an arbitrary
scalar, unimportant for the analysis. Our f -statistics have no denomina-
tor and so are in some sense ‘dimensionless’. (Of course when we apply
a statistical test, such as a Z-score, the statistic is invariant to scaling).
The raw f -statistics are dependent on irrelevant quantities, such as the al-
lelic spectrum of ascertained markers, and thus are not comparable across
different data sets. We chose to scale f2 to minimize the deviations from
Fst by least squares, considering all pairs of populations in the analysis
being carried out. We then rescale f3, f4 using the same scale factor. This
makes all our quantities have units on the same scale as Fst and make our
inferences interpretable as genetic drift. The only effect of the outgroup
here is to force our markers to be polymorphic in our YRI samples — this
is appropriate for our purposes, as ‘private’ alleles are not of interest here.

2. For our 4-population test we use the formula:

f̂ =
∑

k

N̂ [k]/D̂[k]

where D̂[k] is defined as above. This seemed to give more sensitivity. Note
that any weighting of the N̂ [k] is statistically valid (here we use weights
1/D̂[k]), at least if the weights are chosen only using outgroup data. We do
not yet understand what ‘optimal’ weights would be, in terms of statistical
power.

3. For our 3-population test where we are estimating (pX − pY )(pX − pW )
the population X plays a distinguished role in this expression (and indeed
we are testing here the genetic history of X). We therefore set D̂[k] to be
an unbiased estimate of the heterozygosity at marker k for population X
(using (9). We use

f̂3 =

∑

k N̂ [k]

∑

k D̂[k]

In all cases standard errors (and statistical significance) are estimated through
a weighted block jackknife [3, 2]. We use a block size of 5cM .

2.2 Expected values of our f-statistics

.
We can calculate expected values, at least for simple demographies, involving
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populations splits and admixture events (but not yet migrations occurring con-
tinuously in time). We give an illustration for our f3-statistics. Consider a
demography:
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Here, populations A′, B′ split from a root population R. C ′ then was formed
by admixture in proportions α : β (β = 1−α). Modern populations A,B,C are
then formed by drift from A′, B′, C ′. We want to calculate the expected value
of f3(C;A,B) That is we want

F3 = E(fC − fA, fC − fB)

where fA, fB , fC are allele frequencies in A,B,C respectively. We see by or-
thogonality of drifts that

F3(C;A,B) = E(fC′ − fA, fC′ − fB) + E((fC′ − fC)
2
).

(fC′ is the allele frequency in C ′) which we will write as

F3(C;A,B) = F3(C
′;A,B) + F2(C,C ′) (19)

Now, label alleles at a marker 0, 1. Then picking chromosomes from our popu-
lations independently we can write

F3(C
′;A,B) = E(c′ − a)(c′′ − b))

where a, b, c′, c′′ are alleles in populations A,B,C ′. However c′ originated from
A′ with probability α and so on. Thus:

F3(C
′;A,B) = E(c′ − a)(c′′ − b)

= α2E(a′ − a)(a′′ − b) +

β2E(b′ − a)(b′′ − b) +

αβE(a′ − a)(b′ − b) +

αβE(b′ − a)(a′ − b)

where a′, a′′ are independently picked from A′ and b′, b′′ from B′. The first 3
terms vanish Further

E(b′ − a)(a′ − b) = −E((a′ − b′)
2
)
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and we obtain, using (19):

F3(C;A,B) = F2(C,C ′) − αβF2(A
′, B′) (20)

This last equation will have a negative right-hand side if there is little drift
between C,C ′, α is not close to 0 or 1 and A′, B′ have substantially drifted.
Note that drift between A′ and A and also between B′ and B is immaterial
here.

It is worth commenting that this is very specifically a test for admixture of
population C and complex demography in the history of A and B does not effect
the validity of the test. For example suppose we have two modern populations
A,B formed by recent admixture of populations A0, B0. In an obvious notation
A = w1A0 + w2B0, B = v1A0 + v2B0 where

w1 + w2 = v1 + v2 = 1

Then by a similar argument to that above we find that

f3(C;A,B) = f3(C;w1A0 + w2B0, v1A0 + v2B0)

= w1v1f2(C,A0) +

w2v2f2(C,B0) +

(w1v2 + w2v1)f3(C;A0, B0)

and so f3(C;A,B) < 0 implies f3(C;A0, B0) < 0. The complex recent admix-
ture has weakened the test, but not removed the validity.

2.3 f3 and f4 statistics can be formed from f2.

From the identity

(a − b)2 = ((c − a) − (c − b))
2

= (c − a)
2

+ (c − b)
2
− 2(c − a)(c − b)

It follows that

2f3(C;A,B) = f2(C,A) + f2(C,B) − f2(A,B) (21)

Next, writing
d − b = c − b − (c − d)

It follows that

f4(C,A;D,B) = f3(C;A,B) − f3(C;A,D) (22)

Also f4(E,A;D,B) = f4(C,A;D,B) − f4(C,E;D,B). This shows that given
knowledge of all the f2 statistics, then all f3, f4 statistics can be computed. Con-
versely, fix a population C and suppose we know f3(C;A,B) for all populations
A,B. and also f2(C,A) for every A. Then equation (21) shows that f2(A,B)
is determined for all A,B and therefore all f3, f4 statistics are determined.

In calculations it is convenient to pick a basis for the f -statistics. Two
natural bases are:
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1. f2(A,B) for all A,B.

2. For a fixed C (usually an outgroup) f3(C;A,B) and f2(C,A) for all A,B.
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